亚洲国产精品一区二区久久hs,精品国产一级在线观看,免 费 成人黄 色 大片,不卡中文一二三区,国产剧情麻豆mv在线观看,久久久久久久久久久精品,久久九九综合,久久久久久91香蕉国产

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > New methods from material sciences in physics find their way

New methods from material sciences in physics find their way

 Date:

June 18, 2019
Source:
University of Copenhagen
Summary:

A new study on the behavior of water in cancer cells shows how methods usually limited to physics can be of great use in cancer research. The researchers have shown how a combination of neutron scattering and thermal analysis can be used to map the properties of water in breast cancer cells.

A new study on the behavior of water in cancer cells shows how methods usually limited to physics can be of great use in cancer research. The researchers, Murillo Longo Martins and Heloisa N. Bordallo at the Niels Bohr Institute, University of Copenhagen, have shown how advanced methods in materials analysis -- a combination of neutron scattering and thermal analysis -- can be used to map the properties of water in breast cancer cells. This pilot work shows how the mobility of water molecules confined in cancer cells changes when subjected to treatment with a chemotherapy drug. This proposed methodology holds potential for advance diseases diagnosis and might guide to the advancement of the approach used in cancer treatment, one of the biggest challenges in medical research. The result, now published in Scientific Reports, is exactly that.

Comparing cancer cells before and after treatment

When treating cancer with chemotherapy, the drug is usually inserted into the body via the bloodstream. Afterwards the medicament spreads to the entire system, making its way to the cancer cells. The effect of the drug depends on many, many factors. For example, the properties of intra cellular water are altered by the action of the drug. However the role of water in the development or remission of tumors is likely bigger than so far considered. This new perspective will be very instrumental in mapping the precise development, when comparing analysis before and after treatment.

Understanding water and its properties -- a common denominator for all cancer cells -- is vital

Water being the main component in the composition of the cell, understanding its properties, when undergoing treatment for cancer, is vital. Cancer cells respond differently to different kinds of treatment, so a new unorthodox analysis, using techniques from materials-sciences, of the cell's main component, its composition and behavior, could be a common denominator in developing new treatments for individual patients. Murillo Longo Martins, who has been working in this field during his PhD and postdoc at the Niels Bohr Institute, explains: "Our findings indicate that, in the future, drugs can be developed focusing on modifying the properties of cellular water to achieve specific outcomes. In a shorter term, understanding the dynamics of cellular water may provide complementary knowledge about, for example, why some types of cancers respond differently to certain treatments than others."

Unorthodoxy as a method

While physicians and biologists perceive cells as an ensemble of membranes, organelles, genes and other biological components, by combining sophisticated neutron scattering techniques and thermal analysis physicists are able to characterize water dynamics in the cell very precisely. Building a communication interface between these two distinct visions is now proven to be very interesting by the researchers at the Niels Bohr Institute. Their new results can open new areas of inquiry, because of the unorthodox approach. This result is expected to stimulate future collaborations between distinct scientific communities, and further incentivize the use of materials-science approaches when investigating biological matter.

Story Source:

Materials provided by University of CopenhagenNote: Content may be edited for style and length.


Journal Reference:

  1. Murillo L. Martins, Alexander B. Dinitzen, Eugene Mamontov, Svemir Rudi?, José E. M. Pereira, Rasmus Hartmann-Petersen, Kenneth W. Herwig, Heloisa N. Bordallo. Water dynamics in MCF-7 breast cancer cells: a neutron scattering descriptive studyScientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45056-8
潞西市| 鄂伦春自治旗| 罗源县| 久治县| 全南县| 黔西县| 开封市| 高台县| 清水河县| 磴口县| 增城市| 曲靖市| 滨州市| 三台县| 阜新| 利川市| 玉门市| 拜泉县| 林周县| 饶河县| 乌恰县| 澄江县| 丘北县| 商河县| 清苑县| 晋江市| 伊川县| 乳山市| 鹤峰县| 竹北市| 太仆寺旗| 冀州市| 墨竹工卡县| 红原县| 白城市| 武穴市| 丰县| 马公市| 章丘市| 双城市| 布拖县|